74 research outputs found

    Translocation and Recovery Efforts for the Telkwa Caribou, Rangifer tarandus caribou, Herd in Westcentral British Columbia, 1997-2005

    Get PDF
    During 1997–1999, 32 Woodland Caribou (Rangifer tarandus caribou) were translocated from the Sustut Herd to the Telkwa Mountains in westcentral British Columbia to augment recovery of the Telkwa Caribou Herd. The animals were fitted with radiocollars and located during 1997–2000 to determine selection of habitat features and terrain variables. Six Caribou calves were also collared to determine causes and timing of calf mortality during summer 1999. Defining available habitat for newly translocated animals is often arbitrary and subjective, and we based the analyses on ranks for habitat use and availability as this is less sensitive to the inclusion or exclusion of a questionable resource. This method represents some loss of information but provides indications of the relative importance of various habitat types without classifying any as avoided. High elevation habitat (> 1700 masl) on moderate slopes (16 – 45°) received the highest ranks, as did “warm” (136 – 315°) aspects and forests > 250 years old. Three calves died shortly after birth. One calf appeared to have been killed by predation, likely by a Golden Eagle (Aquila chrysaetos), and one calf was abandoned by the cow. Cause of death for the third calf is unknown. To assess habitat use associated with calving we compared summer locations with data obtained throughout the rest of 1999 for eight cows with calves and eight without calves. We found significant difference in use of elevation during calving time, when cows with calves remained at high elevations and barren cows generally descended to lower elevation habitat. Surveys conducted in 2005, five years after the completion of the initial study, produced a count of approximately 90 Caribou. This suggests that in the short term, the translocation was successful in re-establishing a self-sustaining Caribou population in the Telkwa Mountains

    Genetic Rescue of the Highly Inbred Norwegian Lundehund

    Get PDF
    Augmenting the genetic diversity of small, inbred populations by the introduction of new individuals is often termed “genetic rescue“. An example is the Norwegian Lundehund, a small spitz dog with inbreeding-related health problems that is being crossed with three Nordic breeds, in-cluding the Norwegian Buhund. Conservation breeding decisions for the (typically) small number of outcrossed individuals are vital for managing the rescue process, and we genotyped the Lundehund (n = 12), the Buhund (n = 12), their crosses (F1, n = 7) and first-generation backcrosses to the Lundehund (F2, n = 12) with >170,000 single nucleotide polymorphism loci to compare their levels of genetic diversity. We predicted that genome-wide diversity in F2 dogs would be higher than in the Lundehund but lower than in the F1 and the Buhund, and the heterozygosity values showed the expected patterns. We also found that runs of homozygosity, extended chromosomal regions of homozygous genotypes inherited from a common ancestor, were reduced in F2 individuals compared with Lundehund individuals. Our analyses demonstrate the benefits of outcrossing but indicate that some of the acquired genetic diversity is lost following immediate backcrossing. Additional breeding among F2 crosses could therefore merit from further consideration in genetic rescue management.publishedVersio

    Bioacoustic Detection of Wolves:Identifying Subspecies and Individuals by Howls

    Get PDF
    SIMPLE SUMMARY: This study evaluates the use of acoustic devices as a method to monitor wolves by analyzing different variables extracted from wolf howls. By analyzing the wolf howls, we focused on identifying individual wolves, subspecies. We analyzed 170 howls from 16 individuals from the three subspecies: Arctic wolves (Canis lupus arctos), Eurasian wolves (C.l. lupus), and Northwestern wolves (C.l. occidentalis). We assessed the potential for individual recognition and recognition of three subspecies: Arctic, Eurasian, and Northwestern wolves. ABSTRACT: Wolves (Canis lupus) are generally monitored by visual observations, camera traps, and DNA traces. In this study, we evaluated acoustic monitoring of wolf howls as a method for monitoring wolves, which may permit detection of wolves across longer distances than that permitted by camera traps. We analyzed acoustic data of wolves’ howls collected from both wild and captive ones. The analysis focused on individual and subspecies recognition. Furthermore, we aimed to determine the usefulness of acoustic monitoring in the field given the limited data for Eurasian wolves. We analyzed 170 howls from 16 individual wolves from 3 subspecies: Arctic (Canis lupus arctos), Eurasian (C. l. lupus), and Northwestern wolves (C. l. occidentalis). Variables from the fundamental frequency (f0) (lowest frequency band of a sound signal) were extracted and used in discriminant analysis, classification matrix, and pairwise post-hoc Hotelling test. The results indicated that Arctic and Eurasian wolves had subspecies identifiable calls, while Northwestern wolves did not, though this sample size was small. Identification on an individual level was successful for all subspecies. Individuals were correctly classified with 80%–100% accuracy, using discriminant function analysis. Our findings suggest acoustic monitoring could be a valuable and cost-effective tool that complements camera traps, by improving long-distance detection of wolves

    Wolf outside, dog inside? The genomic make-up of the Czechoslovakian Wolfdog

    Get PDF
    Background Genomic methods can provide extraordinary tools to explore the genetic background of wild species and domestic breeds, optimize breeding practices, monitor and limit the spread of recessive diseases, and discourage illegal crossings. In this study we analysed a panel of 170k Single Nucleotide Polymorphisms with a combination of multivariate, Bayesian and outlier gene approaches to examine the genome-wide diversity and inbreeding levels in a recent wolf x dog cross-breed, the Czechoslovakian Wolfdog, which is becoming increasingly popular across Europe. Results Pairwise FST values, multivariate and assignment procedures indicated that the Czechoslovakian Wolfdog was significantly differentiated from all the other analysed breeds and also well-distinguished from both parental populations (Carpathian wolves and German Shepherds). Coherently with the low number of founders involved in the breed selection, the individual inbreeding levels calculated from homozygosity regions were relatively high and comparable with those derived from the pedigree data. In contrast, the coefficient of relatedness between individuals estimated from the pedigrees often underestimated the identity-by-descent scores determined using genetic profiles. The timing of the admixture and the effective population size trends estimated from the LD patterns reflected the documented history of the breed. Ancestry reconstruction methods identified more than 300 genes with excess of wolf ancestry compared to random expectations, mainly related to key morphological features, and more than 2000 genes with excess of dog ancestry, playing important roles in lipid metabolism, in the regulation of circadian rhythms, in learning and memory processes, and in sociability, such as the COMT gene, which has been described as a candidate gene for the latter trait in dogs. Conclusions In this study we successfully applied genome-wide procedures to reconstruct the history of the Czechoslovakian Wolfdog, assess individual wolf ancestry proportions and, thanks to the availability of a well-annotated reference genome, identify possible candidate genes for wolf-like and dog-like phenotypic traits typical of this breed, including commonly inherited disorders. Moreover, through the identification of ancestry-informative markers, these genomic approaches could provide tools for forensic applications to unmask illegal crossings with wolves and uncontrolled trades of recent and undeclared wolfdog hybrids

    A reduced SNP panel to trace gene flow across southern European wolf populations and detect hybridization with other Canis taxa

    Get PDF
    [EN] Intra- and inter-specific gene flow are natural evolutionary processes. However, human-induced hybridization is a global conservation concern across taxa, and the development of discriminant genetic markers to differentiate among gene flow processes is essential. Wolves (Canis lupus) are affected by hybridization, particularly in southern Europe, where ongoing recolonization of historic ranges is augmenting gene flow among divergent populations. Our aim was to provide diagnostic canid markers focused on the long-divergent Iberian, Italian and Dinaric wolf populations, based on existing genomic resources. We used 158 canid samples to select a panel of highly informative single nucleotide polymorphisms (SNPs) to (i) distinguish wolves in the three regions from domestic dogs (C. l. familiaris) and golden jackals (C. aureus), and (ii) identify their first two hybrid generations. The resulting 192 SNPs correctly identified the five canid groups, all simulated first-generation (F1) hybrids (0.482≤Qi≤0.512 between their respective parental groups) and all first backcross (BC1) individuals (0.723≤Qi≤0.827 to parental groups). An assay design and test with invasive and non-invasive canid samples performed successfully for 178 SNPs. By separating natural population admixture from inter-specific hybridization, our reduced panel can help advance evolutionary research, monitoring, and timely conservation management.We thank S. Czarnomska, A. Galov, J. Harmoinen, E. Velli, D. Battilani, P. Aragno, P. Genovesi, and the Mam- mal Research Institute, Polish Academy of Sciences, for their assistance. We are also grateful to two anonymous reviewers for their constructive feedback that greatly improved our manuscript. Funding was provided to ISPRA by the Italian Ministry of Environment (MATTM; Direzione Tutela della Natura) and Regione Emilia Romagna (Assessorato Agricoltura) within a multi-year collaborative project to genotype and monitor the Italian wolf population. AVS was supported by a senior postdoctoral fellowship from Insubria University, Italy. RG was sup- ported by a research contract from the Portuguese Foundation for Science and Technolog

    Genome-wide analyses suggest parallel selection for universal traits may eclipse local environmental selection in a highly mobile carnivore

    Get PDF
    Ecological and environmental heterogeneity can produce genetic differentiation in highly mobile species. Accordingly, local adaptation may be expected across comparatively short distances in the presence of marked environmental gradients. Within the European continent, wolves (Canis lupus) exhibit distinct north-south population differentiation. We investigated more than 67-K single nucleotide polymorphism (SNP) loci for signatures of local adaptation in 59 unrelated wolves from four previously identified population clusters (northcentral Europe n=32, Carpathian Mountains n=7, Dinaric-Balkan n=9, Ukrainian Steppe n=11). Our analyses combined identification of outlier loci with findings from genome-wide association study of individual genomic profiles and 12 environmental variables. We identified 353 candidate SNP loci. We examined the SNP position and neighboring megabase (1Mb, one million bases) regions in the dog (C. lupus familiaris) genome for genes potentially under selection, including homologue genes in other vertebrates. These regions included functional genes for, for example, temperature regulation that may indicate local adaptation and genes controlling for functions universally important for wolves, including olfaction, hearing, vision, and cognitive functions. We also observed strong outliers not associated with any of the investigated variables, which could suggest selective pressures associated with other unmeasured environmental variables and/or demographic factors. These patterns are further supported by the examination of spatial distributions of the SNPs associated with universally important traits, which typically show marked differences in allele frequencies among population clusters. Accordingly, parallel selection for features important to all wolves may eclipse local environmental selection and implies long-term separation among population clusters.201

    Reliable wolf-dog hybrid detection in Europe using a reduced SNP panel developed for non-invasively collected samples

    Get PDF
    Background Understanding the processes that lead to hybridization of wolves and dogs is of scientific and management importance, particularly over large geographical scales, as wolves can disperse great distances. However, a method to efficiently detect hybrids in routine wolf monitoring is lacking. Microsatellites offer only limited resolution due to the low number of markers showing distinctive allele frequencies between wolves and dogs. Moreover, calibration across laboratories is time-consuming and costly. In this study, we selected a panel of 96 ancestry informative markers for wolves and dogs, derived from the Illumina CanineHD Whole-Genome BeadChip (174 K). We designed very short amplicons for genotyping on a microfluidic array, thus making the method suitable also for non-invasively collected samples. Results Genotypes based on 93 SNPs from wolves sampled throughout Europe, purebred and non-pedigree dogs, and suspected hybrids showed that the new panel accurately identifies parental individuals, first-generation hybrids and first-generation backcrosses to wolves, while second- and third-generation backcrosses to wolves were identified as advanced hybrids in almost all cases. Our results support the hybrid identity of suspect individuals and the non-hybrid status of individuals regarded as wolves. We also show the adequacy of these markers to assess hybridization at a European-wide scale and the importance of including samples from reference populations. Conclusions We showed that the proposed SNP panel is an efficient tool for detecting hybrids up to the third-generation backcrosses to wolves across Europe. Notably, the proposed genotyping method is suitable for a variety of samples, including non-invasive and museum samples, making this panel useful for wolf-dog hybrid assessments and wolf monitoring at both continental and different temporal scales.Peer reviewe

    Unravelling the Scientific Debate on How to Address Wolf-Dog Hybridization in Europe

    Get PDF
    Anthropogenic hybridization is widely perceived as a threat to the conservation of biodiversity. Nevertheless, to date, relevant policy and management interventions are unresolved and highly convoluted. While this is due to the inherent complexity of the issue, we hereby hypothesize that a lack of agreement concerning management goals and approaches, within the scientific community, may explain the lack of social awareness on this phenomenon, and the absence of effective pressure on decision-makers. By focusing on wolf x dog hybridization in Europe, we hereby (a) assess the state of the art of issues on wolf x dog hybridization within the scientific community, (b) assess the conceptual bases for different viewpoints, and (c) provide a conceptual framework aiming at reducing the disagreements. We adopted the Delphi technique, involving a three-round iterative survey addressed to a selected sample of experts who published at Web of Science listed journals, in the last 10 years on wolf x dog hybridization and related topics. Consensus was reached that admixed individuals should always be defined according to their genetic profile, and that a reference threshold for admixture (i.e., q-value in assignment tests) should be formally adopted for their identification. To mitigate hybridization, experts agreed on adopting preventive, proactive and, when concerning small and recovering wolf populations, reactive interventions. Overall, experts' consensus waned as the issues addressed became increasingly practical, including the adoption of lethal removal. We suggest three non-mutually exclusive explanations for this trend: (i) value-laden viewpoints increasingly emerge when addressing practical issues, and are particularly diverging between experts with different disciplinary backgrounds (e.g., ecologists, geneticists); (ii) some experts prefer avoiding the risk of potentially giving carte blanche to wolf opponents to (illegally) remove wolves, based on the wolf x dog hybridization issue; (iii) room for subjective interpretation and opinions result from the paucity of data on the effectiveness of different management interventions. These results have management implications and reveal gaps in the knowledge on a wide spectrum of issues related not only to the management of anthropogenic hybridization, but also to the role of ethical values and real-world management concerns in the scientific debate

    What can livestock breeders learn from conservation genetics and vice versa?

    Get PDF
    The management of livestock breeds and threatened natural population share common challenges, including small effective population sizes, high risk of inbreeding, and the potential benefits and costs associated with mixing disparate gene pools. Here, we consider what has been learnt about these issues, the ways in which the knowledge gained from one area might be applied to the other, and the potential of genomics to provide new insights. Although there are key differences stemming from the importance of artificial versus natural selection and the decreased level of environmental heterogeneity experienced by many livestock populations, we suspect that information from genetic rescue in natural populations could be usefully applied to livestock. This includes an increased emphasis on maintaining substantial population sizes at the expense of genetic uniqueness in ensuring future adaptability, and on emphasizing the way that environmental changes can influence the relative fitness of deleterious alleles and genotypes in small populations. We also suspect that information gained from cross-breeding and the maintenance of unique breeds will be increasingly important for the preservation of genetic variation in small natural populations. In particular, selected genes identified in domestic populations provide genetic markers for exploring adaptive evolution in threatened natural populations. Genomic technologies in the two disciplines will be important in the future in realizing genetic gains in livestock and maximizing adaptive capacity in wildlife, and particularly in understanding how parts of the genome may respond differently when exposed to population processes and selection
    • …
    corecore